BETTI NUMBERS OF CHORDAL GRAPHS AND f-VECTORS OF SIMPLICIAL COMPLEXES

نویسندگان

  • TAKAYUKI HIBI
  • KYOUKO KIMURA
  • SATOSHI MURAI
چکیده

Let G be a chordal graph and I(G) its edge ideal. Let β(I(G)) = (β0, β1, . . . , βp) denote the Betti sequence of I(G), where βi stands for the ith total Betti number of I(G) and where p is the projective dimension of I(G). It will be shown that there exists a simplicial complex ∆ of dimension p whose f -vector f(∆) = (f0, f1, . . . , fp) coincides with β(I(G)).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertex Decomposable Simplicial Complexes Associated to Path Graphs

Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...

متن کامل

Kruskal-Katona type theorems for clique complexes arising from chordal and strongly chordal graphs

A forest is the clique complex of a strongly chordal graph and a quasiforest is the clique complex of a chordal graph. Kruskal–Katona type theorems for forests, quasi-forests, pure forests and pure quasi-forests will be presented. Introduction Recently, in commutative algebra, the forest ([5]) and the quasi-forest ([17] and [9]) have been extensively studied. Each of these concepts is, however,...

متن کامل

Research Statement – Christopher A. Francisco

My research is in commutative algebra, and I am especially interested in problems with applications to combinatorics and algebraic geometry. The focus of my most recent work has been to connect combinatorial features of graphs and simplicial complexes to properties of corresponding algebraic structures, trying to build a dictionary between the two to generate new ways of solving problems in eac...

متن کامل

On the Complexity of Some Variations of Y -Dominating Functions on Graphs

Let Y be a subset of real numbers. A Y dominating function of a graph G = (V, E) is a function f : V → Y such that u∈NG[v] f(u) ≥ 1 for all vertices v ∈ V , where NG[v] = {v} ∪ {u|(u, v) ∈ E}. Let f(S) = u∈S f(u) for any subset S of V and let f(V ) be the weight of f . The Y -domination problem is to find a Y -dominating function of minimum weight for a graph. In this paper, we study the variat...

متن کامل

Distributed computation of homology using harmonics

We present a distributed algorithm to compute the first homology of a simplicial complex. Such algorithms are very useful in topological analysis of sensor networks, such as its coverage properties. We employ spanning trees to compute a basis for algebraic 1-cycles, and then use harmonics to efficiently identify the contractible and homologous cycles. The computational complexity of the algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009